SslE Elicits Functional Antibodies That Impair In Vitro Mucinase Activity and In Vivo Colonization by Both Intestinal and Extraintestinal Escherichia coli Strains
نویسندگان
چکیده
SslE, the Secreted and surface-associated lipoprotein from Escherichia coli, has recently been associated to the M60-like extracellular zinc-metalloprotease sub-family which is implicated in glycan recognition and processing. SslE can be divided into two main variants and we recently proposed it as a potential vaccine candidate. By applying a number of in vitro bioassays and comparing wild type, knockout mutant and complemented strains, we have now demonstrated that SslE specifically contributes to degradation of mucin substrates, typically present in the intestine and bladder. Mutation of the zinc metallopeptidase motif of SslE dramatically impaired E. coli mucinase activity, confirming the specificity of the phenotype observed. Moreover, antibodies raised against variant I SslE, cloned from strain IHE3034 (SslEIHE3034), are able to inhibit translocation of E. coli strains expressing different variants through a mucin-based matrix, suggesting that SslE induces cross-reactive functional antibodies that affect the metallopeptidase activity. To test this hypothesis, we used well-established animal models and demonstrated that immunization with SslEIHE3034 significantly reduced gut, kidney and spleen colonization by strains producing variant II SslE and belonging to different pathotypes. Taken together, these data strongly support the importance of SslE in E. coli colonization of mucosal surfaces and reinforce the use of this antigen as a component of a broadly protective vaccine against pathogenic E. coli species.
منابع مشابه
Correction: SslE Elicits Functional Antibodies That Impair In Vitro Mucinase Activity and In Vivo Colonization by Both Intestinal and Extraintestinal Escherichia coli Strains
In the Author Contributions section, Kate L. Seib (KLS) should be listed as one of the persons who conceived and designed the experiments. is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
متن کاملPathogenic E. coli Exploits SslE Mucinase Activity to Translocate through the Mucosal Barrier and Get Access to Host Cells
SslE is a zinc-metalloprotease involved in the degradation of mucin substrates and recently proposed as a potential vaccine candidate against pathogenic E. coli. In this paper, by exploiting a human in vitro model of mucus-secreting cells, we demonstrated that bacteria expressing SslE have a metabolic benefit which results in an increased growth rate postulating the importance of this antigen i...
متن کاملDifferential Regulation of the Surface-Exposed and Secreted SslE Lipoprotein in Extraintestinal Pathogenic Escherichia coli
Extra-intestinal pathogenic Escherichia coli (ExPEC) are responsible for diverse infections including meningitis, sepsis and urinary tract infections. The alarming rise in anti-microbial resistance amongst ExPEC complicates treatment and has highlighted the need for alternative preventive measures. SslE is a lipoprotein secreted by a dedicated type II secretion system in E. coli that was first ...
متن کاملFdeC, a Novel Broadly Conserved Escherichia coli Adhesin Eliciting Protection against Urinary Tract Infections
UNLABELLED The increasing antibiotic resistance of pathogenic Escherichia coli species and the absence of a pan-protective vaccine pose major health concerns. We recently identified, by subtractive reverse vaccinology, nine Escherichia coli antigens that protect mice from sepsis. In this study, we characterized one of them, ECOK1_0290, named FdeC (factor adherence E. coli) for its ability to me...
متن کاملGenetic variation among Escherichia coli isolates from human and calves by using RAPD PCR
Background: Various strains of Escherichia coli (E. coli) are known as major causes of intestinal and extraintestinal infections in humans and various animal species. Molecular methods are important for the identification of bacterial isolates and nucleotide sequence variations, as well as information on tracking bacterial agents related to the outbreaks, the frequency of the bacterial genetic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2014